Part Number Hot Search : 
1N3021 EPR1036 LT1192 SMCJ5632 JANTXV2 BUP203 HDK5361 CAT24
Product Description
Full Text Search
 

To Download IRF3610STRLPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits gds gate drain source d s g d 2 pak irf3610spbf v dss 100v r ds ( on ) typ. 9.3m ? max. 11.6m ? i d 103a s d g absolute maximum ratings symbol parameter units i d @ t c = 25c i d @ t c = 100c i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds avalanche characteristics e as sin g le pulse avalanche ener g y (thermally limited) mj i ar avalanche current  a e ar repetitive avalanche ener g y  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.50 c/w r ja junction-to-ambient (pcb mount)  ??? 40 460 see fig. 14, 15, 22a, 22b 333 23 a c 300 (1.6mm from case) max. 103 73 410 continuous drain current, v gs @ 10v continuous drain current, v gs @ 10v -55 to + 175 20 2.2 
  



 
 

 





!


 




 

 





!
    repetitive rating; pulse width limited by max. junction temperature.   limited by t jmax , starting t j = 25c, l = 0.24mh r g = 50 ? , i as = 62a, v gs =10v. part not recommended for use above this value.  i sd 62a, di/dt 1935a/s, v dd v (br)dss , t j 175c.   pulse width 400s; duty cycle 2%.   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . s d g  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom- mended footprint and soldering techniques refer to application note #an-994.     
       jc      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown volta g e 100 ??? ??? v ? v (br)dss / ? t j breakdown volta g e temp. coefficient ??? 0.10 ??? v/c r ds(on) static drain-to-source on-resistance ??? 9.3 11.6 m ? v gs(th) gate threshold volta g e 2.0 ??? 4.0 v g fs forward transconductance 110 ??? ??? s r g internal gate resistance ??? 2.2 ??? ? i dss drain-to-source leaka g e current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leaka g e ??? ??? 200 na gate-to-source reverse leaka g e ??? ??? -200 dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units q g total gate char g e ??? 100 150 nc q gs gate-to-source char g e ??? 23 ??? q gd gate-to-drain ("miller") char g e ??? 42 ??? q sync total gate char g e sync. (q g - q gd ) ??? 58 ??? t d(on) turn-on delay time ??? 15 ??? ns t r rise time ??? 55 ??? t d(off) turn-off delay time ??? 77 ??? t f fall time ??? 43 ??? c iss input capacitance ??? 5380 ??? pf c oss output capacitance ??? 690 ??? c rss reverse transfer capacitance ??? 100 ??? c oss eff. (er) effective output capacitance (energy related) ??? 560 ??? c oss eff. (tr) effective output capacitance (time related) ??? 750 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 103 a (body diode) i sm pulsed source current ??? ??? 410 a (body diode)  v sd diode forward volta g e ??? ??? 1.3 v t rr reverse recovery time ??? 110 ??? ns t j = 25c v r = 85v, ??? 120 ??? t j = 125c i f = 62a q rr reverse recovery char g e ??? 570 ??? nc t j = 25c di/d t = 100a/ s  ??? 710 ??? t j = 125c i rrm reverse recovery current ??? -9.5 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is ne g li g ible (turn-on is dominated by ls+ld) v ds = 25v, i d = 62a i d = 62a r g = 2.7 ? v gs = 10v  v dd = 65v i d = 62a, v ds =0v, v gs = 10v conditions i d = 62a v gs = 20v v gs = -20v t j = 25c, i s = 62a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1.0ma  v gs = 10v, i d = 62a  v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 80v  , see fig. 11 v gs = 0v, v ds = 0v to 80v 

 




 

 





!
 " fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 6.0v 5.0v 4.7v 4.5v 4.2v bottom 4.0v 60s pulse width tj = 25c 4.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.0v 60s pulse width tj = 175c vgs top 15v 10v 6.0v 5.0v 4.7v 4.5v 4.2v bottom 4.0v 2 3 4 5 6 7 8 9 10 11 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 62a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 140 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 62a

 




 

 





!
  fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 95 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) i d = 1.0ma 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 400 800 1200 1600 2000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 13a 27a bottom 62a 0 20 40 60 80 100 120 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 e n e r g y ( j ) 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1ms 10ms operation in this area limited by r ds (on) 100s dc 3ms

 




 

 





!
 # fig 13. maximum effective transient thermal impedance junction-to-case fig 14. typical avalanche current vs. pulse width fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 13, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 62a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse)

 




 

 





!
 
$
%&'
(&
)
(
  * fig 16. threshold voltage vs. temperature 
$
%&'

)+
(
  * 
$
%&'
(&
)
(
  * 

$
%&'

)+
(
  * -100 -50 0 50 100 150 200 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 10 20 30 40 50 60 i r r m ( a ) i f = 62a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 10 20 30 40 50 60 i r r m ( a ) i f = 41a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 500 1000 1500 2000 2500 3000 3500 4000 q r r ( n c ) i f = 41a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 500 1000 1500 2000 2500 3000 3500 4000 q r r ( n c ) i f = 62a v r = 85v t j = 25c t j = 125c

 




 

 





!
 , fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. -

(&
(*
%
)
for n-channel hexfet 
power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period .     !" #" . + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
     d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %       #$  % + -    

 




 

 





!
 /   
    
   
                
 
    
   



 




 

 





!
 0   
  dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. 

  !"!  #$
%$& ' #& (
 
)"*+,& -#. / 
  

  & 
 $    0
        
 
    
   




▲Up To Search▲   

 
Price & Availability of IRF3610STRLPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X